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The results of computing a shock reflection are found to strongly depend on the
chosen coordinate system, Lagrangian or Eulerian. This is seen by comparing the
amount of “wall heating” associated with the solutions to Noh’s shock reflection
problem computed in each reference frame. Here, an explanation is offered that places
a greater burden on the role of phase error or effective wave speed in producing this
effect. The reason for the greater difficulties in the Lagrangian frame are the non-
uniformity of the mass coordinates in a converging geometry. This produces a non-
steady-state discrete shock profile.
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1. INTRODUCTION

Shock reflection or shock interactions are often associated with a phenomenon known
generically as “wall heating.” This problem has been studied since the dawn of simulating
shock waves [1] and has been revisited ever since [2–9]. This term was coined by Noh [5]
and is most commonly associated with a shock reflecting from a wall or axis in a convergent
geometry. Noh also introduced an infinite shock reflection problem that bears his name and
its numerical solution is characteristic of this phenomenon. Noh’s problem consists of a
initial condition of a uniform density,ρ0= 1, zero pressure,p0= 0, and a uniform inflow,
u=−1 in a unit domainx, r ∈ [0, 1].

Typical solutions have density profiles with a large disparity from the analytical result
near the axis. This is shown in Fig. 1a. Note that the Lagrangian solution experiences wall
heating nearr = 0, not present using the same method in Eulerian coordinates. The exact
solution is given with the dashed line. For the Lagrangian solution, the grid is shown at the
lower edge of the plot. Note that the Lagrangian grid retains the same number of cells, but
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FIG. 1. Noh’s problem in spherical coordinates coordinates computed using a high-resolution Godunov
method. (a) Lagrangian coordinates and (b) Eulerian coordinates.

the final cell has moved fromr = 1.0 to r = 0.4 due to the inflow condition. In both cases,
Lagrangian or Eulerian, the solution is displayed forx, r ∈ [0, 0.4]. Comparing the shock po-
sitions in the two solutions (using linear interpolation for the spatial position whereρ= 40)
shows the Lagrangian shock is atr = 0.2065 and the Eulerian shock is atr = 0.2008. Note
that the exact shock location isr = 1/5. Both solutions were computed with the same
Courant number, 0.8, and the same number of zones behind the shock (i.e., the post-shock
state,r ≤ 0.2) when the solution is displayed, 80. Because the pressure is computed ac-
curately, the equation of state will provide a commensurate rise in energy (temperature)
to offset the deficit in density. Hence, the term “wall heating” is used to describe these
solutions.

Early studies of numerical simulations of shock waves on nonuniform meshes [3] or
converging geometries [1] focused on the unsteady nature of the effective wave propagation.
The problem revolves around the definition of the artificial viscosity [10, 11] defined for a
steady-state shock profile and its reaction to a change in the length scale as defined by the
mesh. Riemann solvers used in Godunov-type methods are based on similar principles via
the Rankine–Hugoniot relations [12]. The unsteady shock propagation has not been directly
related to the problem of shock reflections nor to the property of phase errors in numerical
methods. Earlier studies focused on Lagrangian grids.

Here, our attention will center upon differences that manifest themselves when a calcu-
lation is done in Eulerian coordinates. Compare the results in Figs. 1a and 1b. The method
used to compute these results is identical except for the frame-of-reference. It is built using
the spatial and temporal differencing and Riemann solver described in [13]. Other important
issues that are related to the overall interpretation of the results are the shock width, the
starting errors, and the asymptotic order of the method. Each of these issues will be touched
upon as the paper progresses. In the past few years, several methods have been introduced
to alleviate the problems associated with this general phenomenon [9, 14]. While this effect
is most acute with strong reflected shocks or symmetry boundaries, it also is important with
interacting shocks [6] and contact discontinuities [15].

The motivation for this work was results that do not follow the accepted nature of the
solution to Noh’s problem. It is important to understand these results so that a more general
and less serendipitous solution may be derived. Here we will discuss this problem and issues
that expand the scope of the numerical difficulties associated with what has become known
as “wall heating” beyond purely numerical dissipation to include phase errors (or non-
constant shock speed) as an important contributor to the effect in converging geometries.
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First, we will present the computational evidence of the unexpected solutions to Noh’s
problem. We are motivated by a simple observation: for nearly identical numerical methods,
wall heating is much more acute in a Lagrangian frame than it is in the Eulerian frame. In
Section 3, we will offer an explanation for the observations that differ from the usual and
focus on phase errors. We will present results and some predominantly heuristic reasoning
that adds an important effect in the Lagrangian frame for converging geometries.

2. COMPUTATIONAL EVIDENCE

We will show results solving the Euler equations in Lagrangian coordinates,

∂τ
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in control volume form, withτ being the specific volume, 1/ρ, u is the velocity,E is
the total energy,E= e+ 1

2u2, with an equation of state for the pressure,p= (γ − 1)ρe, A
the area,̄A is a volume averaged area,V is the physical volume, andm is the mass coordinate
(ρV). We are specifically interested in the differences found in Eulerian coordinates where
the Euler equations are
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The main point of this paper is shown by comparing the results in Fig. 1 with Fig. 2.
In Fig. 2, the solutions in the Lagrangian and Eulerian frame of reference are more alike
than different and wall heat/cooling is modest at best. The exact solution is given with the
dashed line. Both solutions have their largest errors at the left boundary where the shock
formed and these errors are somewhat larger in the Lagrangian frame. For Noh’s problem
in planar coordinates, the solutions are quite similar in the two frames, while they are quite
different in spherical coordinates. In both cases, the shock is sharp and is 1 zone wide.
There are small oscillations in the post-shock region, and the largest errors are adjacent
to the reflection boundary. The small oscillations are a result of discretely propagating a
narrow, one–zone wide shock. If the Riemann solver is replaced with one that maintains
a two- to three-zone-wide 2 shock, the oscillations are significantly reduced in amplitude.
However, in spherical coordinates, the solutions are much different when computed using
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FIG. 2. Noh’s problem in planar coordinates computed using a high-resolution Godunov method.
(a) Lagrangian coordinates and (b) Eulerian coordinates.

the same method. The Eulerian result has very little wall heating, while the Lagrangian
result is plagued by a substantial amount of wall heating. This is clear upon viewing Fig. 1.

The question to answer is why are the results in Fig. 2 so alike, while the results in Fig. 1
so different?

Conventional wisdom leads one to expect that the level of artificial viscosity is lower in
the Lagrangian frame because the contact wave has been dealt with analytically rather than
numerically (with dissipation) in the Eulerian frame-of-reference. One could reasonably
conclude that the errors seen nearx= 0 or r = 0 are starting errors. Insofar as the shock
width is concerned, the high-resolution Godunov method produces a shock with a width of
one zone for Noh’s problem. The narrow shock is chosen to minimize the role of the shock
width in determining the solution as the shock reflects from the center of the sphere. This
should minimize the impact of the discrete shock width in producing pathological results [6]
during the initial portion of the shock reflection.

To add to the evidence we also display the results of a modern version of an artificial
viscosity method [16] in Lagrangian coordinates in Fig. 3. The solution is quite similar both
qualitatively and quantitatively to the high-resolution Godunov method in Lagrangian coor-
dinates. In this solution using the same method as used in Fig. 1, the shock is atr = 0.2126.
One difference is that the shock computed with this method is broader, occupying three
zones rather than one. The startup errors nearx= 0 are greater in the Lagrangian solution,
but are localized to several zones adjacent to the boundary. This increase in shock width
also aids in reducing the post-shock oscillations.

FIG. 3. Noh’s problem computed with a flux-limited von Neumann-Richtmyer method for planar and spherical
frames. (a) Planar and (b) spherical.
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One should note two general aspects of Lagrangian solutions: the grid spacing is a
dynamic variable as the solution evolves, and the mesh is described in mass coordinates
in the governing equations. Thus, should one start with constant mesh spacing in planar
coordinates, the constant mesh spacing will remain in mass coordinates, but the spatial mesh
spacing will contract by a factor of four matching the density jump across the shock. In a
one-dimensional spherical geometry the mesh spacing will also vary near the axis where
the volume of mesh cells changes dramatically (with constant radial spacing). In spherical
geometry, the ratio in volume between the first and second control volumes is 1 : 7. Between
the second and third control volumes the ratio is nearly 1 : 3. Thus, the mass of zones changes
dramatically near the center of the sphere, resulting in a highly variable mesh spacing. One
is confronted with variable coordinate spacing in general and, in convergent geometries,
variable mesh spacing in both spatial and mass coordinates. This is further exaggerated by
the compression of mesh cells across the shock.

A cautionary note should be taken when comparing Lagrangian and Eulerian solutions.
Some Eulerian codes are solved using an internal energy equation rather than the total
energy equation [7, 17–19]. The internal energy equation is an evolution equation, while
the total energy equation is a conservation equation. At this point it is important to note that
convergence to a weak solution of the Euler equations is assured by the use of discretely
conservative difference schemes [20, 21]. Therefore, the solutions found using the internal
energy equation are not certain to converge to a weak solution of the Euler equations. We
also note that the von Neumann–Richtmyer code uses the internal energy equation although
modern methods based on compatible differencing [22] produce conservation of energy at
a discrete level, and thus should converge to a weak solution. The unique weak solution is
found through an adequate amount of entropy production.

Solutions in Eulerian coordinates using the internal energy equation are susceptible to
“wall heating” errors that seem reasonable given the nature of solutions in the Lagrangian
coordinates. In our code, the energy equation is modified from (2c) to

∂ρe

∂t
+ ∂Aρue

∂V
+ p̄

∂Au

∂V
= 0,

purely for the purpose of updating the energy from old to new time levels. Results using this
equation are shown in Fig. 4 where wall heating is evident in the spherical Noh problem.

FIG. 4. Noh’s problem solved in Eulerian coordinates with a high-resolution Godunov method, which updates
the internal rather than the total energy equation. (a) Planar and (b) spherical.
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FIG. 5. The solution to Noh’s problem using the internal energy equation, but with 100 zones (only 20 in the
post-shock state). (a) Internal energy with 100 zones and (b) total energy with 100 zones.

The solution converges to an incorrect answer in both cases. These calculations are done
using the same numerical conditions (zone number and CFL number) as Figs. 1b and 2b.
One should recognize that the code used to solve Noh’s problem is identical to the code
used in the other Eulerian results except for the form of the energy equation used to update
the cell-centered variables (i.e., the same time and space differencing and Riemann solver).

Furthermore, the results both indicate that the solution is converging to an incorrect
answer with a density that is too high and a shock speed that is too low. Additionally
these aspects are masked by the wall heating, which produces solutions that do not show
the overshoot in the density if the calculation is conducted on coarser grids (as is the
common practice for Noh’s problem). This result is given in Fig. 5 where the solution is
similar to those seen in Lagrangian coordinates. Note that this solution seems reasonable
or even high-quality given the Lagrangian results in Fig. 1a or Fig. 3b. Without using mesh
refinement to study the convergence of the solution, the problems seen at higher mesh
resolution escapes notice. For comparison the total energy solution with 100 zones is also
shown. Similar results have been shown in [19]. On the other hand, the use of adaptive grids
and implicit time integration with an internal energy equation can lead to impressively
accurate solutions to Noh’s problem [7]. Another caveat is that Lagrangian frame solutions
found with artificial viscosity formulations typically employ an internal energy equation,
but converge experimentally to the correct solution of the Noh problem.

Returning to our original computations, the results are viewed in a somewhat different
manner in Fig. 7. First, the planar calculations will be compared through the evolution of
entropy errors and the density in the cell adjacent to the boundary. This is displayed in
Fig. 6. The entropy errors are largest during the startup of the shock, but settle down and
become fairly small as time progresses. The Lagrangian schemes have larger relative errors
than the Eulerian. In planar coordinates, the Eulerian and Lagrangian schemes are more
similar than different. Here, the entropy comparison is given by the ratio of the computed
entropy and the analytical solution,

Ratio of Entropy Error=
∑

i Vi piρ
(1−γ )
i − 22/3t/9

22/3t/9
,

whereVi is the volume of a mesh cell (
∑

exactV = xexact, xexact= st, s= 1/3, pexact= 4/3,
ρexact= 4). The errors are quite comparable between the methods although the Eulerian
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FIG. 6. A comparison of relative entropy errors for three solutions to Noh’s problem in planar coordinates.
The density in the first computational cell (adjacent to the reflecting boundary) is also displayed. (a) Entropy error
and (b) density in cell 1.

solution has somewhat smaller errors. In the case of the density in the first zone, the
Lagrangian solution is comparable to the the Eulerian solution. Interestingly, the artificial
viscosity code produces an overshoot in velocity in the first zone.

Next, we will compare the spherical case’s numerical solution in the same fashion. As
with the planar case, the entropy comparison uses the difference between the analytical and
numerical solution,

Ratio of Entropy Error=
∑

i Vi piρ
(1−γ )
i − 16π t3/243

16π t3/243
,

whereVi is the volume of a mesh cell (
∑

exactV = 4/3πr 3
exact, rexact= st, s= 1/3, pexact=

64/3, ρexact= 64). By comparing the relative entropy errors in Fig. 7a one can see that the
Eulerian frame solution has the smallest production of entropy once the initial shock is
formed. Both of the Lagrangian frame solutions have higher entropy production although
the artificial viscosity method is the least dissipative at the outset of the solution. This seems
counter to the conventional wisdom mentioned above. It is interesting to recognize that the
magnitude of the entropy error is roughly proportional to the error in the shock position.

The density in the first cell behaves in a fundamentally different fashion depending on
whether one computes the solution in the Eulerian or Lagrangian frame for the convergent
geometry. As shown in Fig. 7b, the density in the Eulerian frame overshoots the analytical
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FIG. 7. A comparison of relative entropy errors for three solutions to Noh’s problem in spherical coordinates
and the density in the first computational cell (adjacent to the axis). (a) Entropy error and (b) density in cell 1.

answer initially, then oscillates around the correct value. The entropy errors are enormous
during the startup of the shock, but settle down as time progresses. The Lagrangian schemes
have larger relative errors than the Eulerian. The Eulerian and Lagrangian schemes are
fundamentally different in the density evolution. This becomes clearer upon viewing the
close-up on the initial shock reflection in Fig. 8. Generally, the entropy startup errors are
larger with the two Godunov methods, but fall below the more classical artificial viscosity
method quickly. The difference in the Eulerian frame is the large overshoot in density as
the shock forms on the grid. This may be associated with a brief period where insuffi-
cient entropy is produced by the method. The exact solution is plotted on the density plot
for reference. The overshoot in the density in the Eulerian frame is associated with too
little entropy production. The “bump” in the plot indicates where the entropy errors are
negative.

This will be further elaborated upon below, indicating that the shock wave speed will be
under predicted in this case, also indicative of lower than analytic entropy production. One
should recognize that too little dissipation is produced. By using a slightly more dissipative
method, the size of the error can be reduced (i.e., a minmod limiter or a Lax–Friedrichs-
type [14] or HLLE Riemann solver [23]). In the Lagrangian frame the density does not reach
the analytical result at any time and levels out to a smaller value. In the Eulerian frame the
density rises rapidly and overshoots the analytical solution, then oscillates near the analytical
solution at late times. The overshoot in Eulerian coordinates closely corresponds to the time
when the entropy produced does not exceed the analytical result.
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FIG. 8. A comparison of relative entropy errors for three solutions to Noh’s problem in spherical coordinates
in the initial formation of the reflected shock. The density in the first computational cell (adjacent to the axis) is
also displayed. (a) Entropy error and (b) density in cell 1.

Ralph Menikoff has observed a structured explanation for the values that the Lagrangian
calculations produce in the first zone for a spherically convergent geometry [24]. Spherical
convergence creates a rise in density of 16 solely through isentropic compression. Through
the equation of state this would drive a pressure rise of 16 as well. Note that in Noh’s problem
the initial pressure is identically zero. In an isentropic process,(ρ1/ρ2)= (p1/p2)

1/γ ; thus
combined with the initial jump density of 4 due to shock compression this leads to a density
slightly larger than 21 (4· 163/5). All of the Lagrangian solutions are consistent with this
prediction (Figs. 1a and 3b). On the other hand, the Eulerian calculations are not. This
would lead one to believe that the Lagrangian methods treat the initial shock reflection in
a more isentropic manner than the Eulerian ones. This receives some support by noting the
size of the initial entropy errors committed by each scheme.

This may have significant bearing on steps that can be taken to ameliorate the effects
of the phenomena. Noh suggests adding artificial heat conduction to reduce the impact of
wall heating [5]. This is discussed in a more modern context in [8] near the end of their
paper. Other manners of addressing this issue are to use grids where the zoning matches cell
masses or impedance (ρcV; c is the sound speed). Within the context of Godunov methods,
approximate Riemann solvers that smear the contact wave (such as Lax–Friedrichs taken
generally) will have this property. Note that the velocity behind the shock is analytically
zero although typically numerical solutions will oscillate around zero (in connection with
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weak shocks bouncing off of the wall or axis). We will return to this question later and view
this in a new light given the following discussion.

3. AN EXPLANATION

It is useful to comment on the nature of dissipation in linear and nonlinear partial dif-
ferential equations at this point. In any case, some terms must be added to the inviscid
equations to produce dissipation as required for physically relevant solutions by the second
law of thermodynamics,T dS≥ 0. The terms introduced into the Euler equations to satisfy
the second law of thermodynamics can also be viewed as a necessary regularization of the
equations for weak solutions. Following from classical analysis (Fourier or modified equa-
tion), in linear equations these terms are exclusively even order differential terms, while the
odd order terms produce phase errors. For nonlinear equations the precise nature of dissipa-
tion is significantly cloudier with differential terms of either order producing the dissipation
or dispersion. An example where odd-order terms are considered as having both characters
is found in [25, 26]. In general, the modified equations have proven useful for explaining
the properties of first-order monotone methods [27], and second-order methods [28]. The
continuum behavior of the modified equation provides significant explanatory insight into
the discrete behavior of approximations.

Lack of clarity not withstanding, errors in the speed of wave propagation can produce
errors in dissipation. Too large a shock speed will result in excess dissipation. This impact has
been seen in Fig. 7a where the Lagrangian frame dissipation exceeds that of the Eulerian
frame. There the mass coordinates’ growth asr increases produces an expanding grid
and a commensurate phase error. As shock strength increases, dissipation is increasingly
dominated by terms that can be viewed as third-order through the expansion for wave speed,

W = ρ(c− s1u),

wherec is the sound speed,s= (γ + 1)/4 in the weak shock limit, where|1u|¿ c, and
s= (γ + 1)/2 in the strong shock limit, where−1uÀ c. It is the strong shock limit
and the above asymptotics that motivated the nonlinear form chosen by von Neumann
and Richtmyer [10], which has the effective differential form,

Q ∼ ∂

∂x

(∣∣∣∣∂u

∂x

∣∣∣∣∂u

∂x

)
,

a third-order positive definite dissipative term [25, 26, 29].
An example of this effect in a Godunov-type integrator can be fashioned for computing

the momentum flux in Lagrangian coordinates,

pL R = 1

2
(pl + pr )− 1

2
|λ|(uR− uL)

whereL andR correspond to the left and right states,L R to the interface state, andλ is an
estimate of the wave speed. Inserting the above values for the wave speed,λ= ρ(c− s1u),
one can see that the first term leads to a linear diffusion-like term, but the second term
(proportional tos) will lead to something similar to the form chosen by von Neumann and
Richtmyer when the flow is compressing [30].
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FIG. 9. The effect of a shock running through a mesh transition where the mesh goes from a coarser to a
finer spacing and then a finer to a coarser spacing. (a) High-resolution Godunov method and (b) von Neumann-
Richtmyer.

As alluded to above, differences in the solution between the Lagrangian and Eulerian
frames can be attributed to the fixed mass nature of cells for the Lagrangian frame of refer-
ence. When a Lagrangian cell is shocked and compressed its spatial extent must shrink. This
causes a shock to move from a fine mesh into a coarser one. This is ameliorated to some extent
by the tendency for first-order differencing to be chosen by monotonicity constraints near
the shock. For the Lagrangian code in planar coordinates, this causes problems for the spatial
differencing, as the mesh spacing is intrinsically unequal. In spherical coordinates, the mass
of zones with equal radial spacing is acutely different near the center of a sphere. As noted
earlier, the ratio in mass between the first and second zones is 7 : 1. This further exacerbates
the problem of mesh variation due to compression across the shock especially near the axis.

To further focus the attention on mesh variation consider a planar shock crossing the
boundary between a coarser to a finer mesh and back from a finer to coarser mesh. A
computed solution is shown for two 2 : 1 mesh variations in Fig. 9. The problem is set up
as follows in order starting atx= 0, 20 zones with1x= 1/65, 20 zones with1x= 1/130,
20 zones with1x= 1/260, 20 zones with1x= 1/130, and 20 zones with1x= 1/65.
Woodward used a similar problem in [31] showing the same qualitative effects.

The calculations shown in Fig. 9 are compelling evidence that variations in mesh spacing
can have a profound impact on the solution mimicking the errors found in spherically
converging geometries. This shows that “wall heating” occurs precisely where the mesh is
increasing its spacing and grows worse as the size of the mesh variation grows. Indeed, we
can refer to this as “mesh heating.” Conversely, the solution experiences “mesh cooling”
where the mesh is refined. Note how the solution gives the effect of wall heating at the point
of mesh expansion and the impact of the mesh variation under refinement is to “cool” the
solution, resulting in a rise in density. One should also compare Fig. 9a with Fig. 2a and
Fig. 9b with Fig. 3a to judge the severity of the errors induced by the variable grid.

One can also make a general heuristic explanation of the basic mechanisms at work
with a variable mesh. As the mesh spacing changes from small to large a leading phase
error causes the shock to propagate too fast leaving a deficit of material in its wake. This
deficit contributes greatly to “wall heating” as a property of the solution. Extending on this
heuristic line-of-thought, in a control volume scheme a wave passing to a coarser mesh will
experience an acceleration through the averaging. This gives a wall heating effect where
the mesh moves from a finer to a coarser grid spacing.
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One is then led to ask what happens if the opposite case is found where the mesh is shrunk
where a shock passes? Our analysis leads us to believe that the wave will slow down due
to shrinking propagation velocity. This slowing will cause a “wall cooling” effect that is
observed in the calculations shown in Fig. 9.

A notable aspect of this phenomena is discussed as it pertains to adaptive mesh refine-
ment [32]. If a shock is allowed to cross the boundary between meshes of different resolution,
numerical pathologies arise. This connection reminds one that the problem has an analytical
explanation in the nature of phase error. Phase error is dispersive and typically the leading
order error for a second-order method. This error is often larger for small Courant numbers.
If there is a constant (not proportional to the Courant number) in the expression for the
phase error, it will become quite significant should the errors be integrated to a fixed time
where the error will become proportional to number of time steps rather than the size of the
time steps.

Information will be propagated along characteristic directions. In the one-dimensional
Euler equations there are three characteristics, two acoustic (genuinely nonlinear) and the
material velocity (linear degenerate contact discontinuity). The time step is chosen by the
largest characteristic speed, which is associated with one of the acoustic modes. Therefore,
information propagating along other characteristics will be integrated at lower effective
Courant numbers. As noted earlier, the material velocity behind the shock is nearly zero
and therefore the material velocity Courant number will be nearly zero. Errors made in
propagating information at small Courant numbers will influence the solution in the post-
shock region. Noting the form of the characteristic variables further bolsters our claim. The
acoustic characteristic variables are1p/c± ρ1u/c2, which is observed to be small behind
the shock, while the contact characteristic variable,1ρ−1p/c2, is large. This further
points to the behavior of the material wave being the key to the post-shock errors in Noh’s
problem. Next, it will be shown that two “building block” schemes have fundamentally
different properties that may significantly influence the results observed. These differences
are most acute in the expressions as the Courant number goes to zero.

Now let us consider the effect of Lax–Friedrichs-type differencing on Noh’s problem.
Fig. 10 shows the impact of using a Lax–Friedrichs-type method as an approximate Riemann
solver [33]. It is notable that the wall heating is nearly absent from the solution. The analysis
that follows uses Fourier analysis and the modified equation of each method on the linear
wave equation,vt +avx = 0 with an expansion for amplitude and phase errors. Assuming

FIG. 10. Noh’s problem in spherical coordinates coordinates with first-order and second-order Godunov
Method and a HLL Riemann solver (like Lax-Friedrichs). (a) First-order and (b) second-order.
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thata> 0 for simplicity, the upwind method is simply

vn+1
j = vn

j − ν
(
vn

j − vn
j−1

)
,

whereν=a1t/1x and the Lax–Friedrichs method is

vn+1
j = vn

j − ν
(
v j+ 1

2
− v j− 1

2

)
,

where

v j+ 1
2
= 1

2

(
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j + vn
j+1

)− 1

2ν

(
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j+1− vn
j

)
.

If one looks at the basic nature of the discrete errors, it is important to note that amplitude
errors never vanish for Lax–Friedrichs,Eamp= 1− 1

2(1− ν)θ2, while they do for upwind
differencing,Eamp= 1− 1

2ν(1− ν)θ2 whereθ→ 0 is the wavenumber (making the expan-
sions formally valid for long wavelength perturbations). In terms of the modified equation,
Lax–Friedrichs produces a second-order term

1x2

21t
(1− ν2)

∂2u

∂x2
,

while upwind differencing gives

1x2

21t
(ν − ν2)

∂2u

∂x2
.

Both Fourier analysis and the modified equations give the same forms and provide the same
conclusion regarding theν→ 0 behavior. Lax–Friedrichs differencing remains dissipative
as the Courant number goes to zero, while upwind differencing’s dissipation vanishes as
the Courant number goes to zero.

One might conclude from this that as the Courant number goes to zero the phase error of
upwind scheme begins to dominate the solution. The Fourier analysis based phase errors
for the two schemes have similar form,Ephase= 1+ (− 1

6 + 1
2ν− 1

3ν
2)θ2 for the upwind,

and Ephase= 1+ ( 1
3 − 1

3ν
2)θ2 for Lax–Friedrichs. In terms of the modified equations, the

third-order dispersive terms are the same for each method,

1x3

61t
(−ν + ν3)

∂3u

∂x3
.

One could be led to conclude that in the limit of small Courant numbers, as is the case
in the material velocity in the post shock region of Noh’s problem, the upwind method is
dominated by the leading phase errors, while the Lax–Friedrichs method continues to be
dominated by dissipative errors.

Given the results in Fig. 10 where a more viscous method shows reduced wall heating
over the assumed less viscous upwind method, while both methods produce nearly equal
dissipation for acoustic waves, the Lax–Friedrichs class of methods (such as HLL) produce
much more dissipation on the material wave. This excess dissipation is proportional to the
ratio of acoustic wave speeds to the material velocity, demonstrating that where viscous
effects remain on the contact wave the wall heating is largely absent from the solution. It



408 WILLIAM J. RIDER

FIG. 11. Noh’s problem is spherical coordinates coordinates computed using a first-order Godunov Method
using the two-shock Riemann solver. (a) Lagrangian coordinates and (b) Eulerian coordinates.

is this point that has a connection with the artificial heat conduction cure for wall heating
proposed by Noh [5]. Compare the first-order results in Fig. 11b with Fig. 10a. In general,
the results with the first-order HLL solver is much superior in virtually every respect to the
assumed lower viscosity method.

By computing the entropy in each case, the actual dissipation can be discussed. When
comparing the entropy error in the spherically convergent case, the HLL method has an
error nearly three times lower than the assumed less dissipative upwind method. This result
shows that the production of entropy is more complex in the nonlinear case than linear
analysis suggests. The greater phase error and lower assumed errors result in a larger actual
error. It should be noted that much of this result is dependent upon solving a problem in
the strong shock limit. This points to viscosity generally reducing the wall heating, while
phase errors would be indicated as the cause of the error. More generally this would indicate
that controlling phase error may have more impact on the reduction of wall heating than
dissipation. This explanation is contrary to accepted notions.

This work does not claim that the wall heating error is all phase error, but rather that
its origins are more complex than commonly thought. Dissipative errors associated with
first-order discretizations (or even-order) errors are still present and contribute strongly to
the overall effect. One should compare the results in Fig. 11 with those in Fig. 1 to see
how comparable first- and second-order methods compute this problem, demonstrating the
greater similarity in solutions where viscosity dominates the solution. Generally, going from
a second-order to a first-order method causes some increase in the severity of the problem
in the Lagrangian frame. In the Eulerian frame, the opposite effect is seen. In the Eulerian
frame, first-order differencing produces results that would be expected to be similar to those
used to Lagrangian frame results. Quantitatively, the errors reduce from 0.294 to 0.163 in
the Lagrangian frame and 0.0701 to 0.0231 in the Eulerian frame (a volume weighted
sum of density errors behind the shock). The shock position improves fromr = 0.2102 to
r = 0.2065 in the Lagrangian frame andr = 0.2027 tor = 0.2008 in the Eulerian frame
(shock position defined by a density ofρ= 40, its exact solution isr = 0.2000). In the
Lagrangian frame second-order differencing improves the results by less than a factor of
2, while in the Eulerian frame the improvement is by more than a factor of 3. To bolster
our analysis, we find counter-intuitive results with respect to the choice of approximate
Riemann solvers. For first-order differencing, the HLL-class of solvers produces much less
dissipation than an upwind method in the spherically convergent Noh problem.
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4. SUMMARY

The problem of wall heating has been an issue for as long as shock physics calculations
have been performed. When a calculation is done in a converging geometry, the Eulerian
calculations using a conservative differencing method shows distinctly less wall heating
than comparable solutions in the Lagrangian frame. An explanation has been proposed that
places a greater emphasis on the effective shock speed than the purely dissipative properties
of the regularization chosen for the Euler equations.

Our evidence begins with consistent differences between the Lagrangian and Eulerian
frame solutions. Another piece of conclusive evidence are the differences found with first-
order Godunov methods. Using Riemann solvers with intrinsically different properties for
dissipation and phase error in the limit of small Courant number, we produce results that can
be explained via analysis of the methods as applied to the linear wave equation. For first-
order differencing, the more diffusive method (HLL) produces results with less wall heating
(lower entropy errors), while the less diffusive upwind method produces large wall heating
effects (larger entropy errors). The upwind method produces its wall heating errors when
its error is dominated by phase error. Finally, the effects of embedded mesh refinements
can reproduce both wall heating and its opposite. These mesh refinements errors are most
often associated with phase error. These effects are consistent with our explanation of the
reason for enhanced wall heating in the Lagrangian frame because of the nature of mass
coordinates.
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